Acoustic feature transformation using UBM-based LDA for speaker recognition

نویسندگان

  • Chengzhu Yu
  • Gang Liu
  • John H. L. Hansen
چکیده

In state-of-the-art speaker recognition system, universal background model (UBM) plays a role of acoustic space division. Each Gaussian mixture of trained UBM represents one distinct acoustic region. The posterior probabilities of features belonging to each region are further used as core components of Baum-Welch statistics. Therefore, the quality of estimated Baum-Welch statistics depends highly on how acoustic regions are separable with each other. In this paper, we propose to transform the front end acoustical features into a space where the separability of mixtures of trained UBM can be optimized. To achieve this, an UBM was first trained from the acoustical features and a transformation matrix is estimated using linear discriminant analysis (LDA) by treating each mixture of trained UBM as independent class. Therefore, the proposed method named as UBM-based LDA (uLDA) does not require any speaker labels or other supervised information. The obtained transformation matrix is then applied to acoustic features for i-Vector extraction. Experimental results on the male part of core conditions of NIST SRE 2010 dataset confirmed the improved performance using proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Front-end Channel Compensation using Mixture-dependent Feature Transformations for i-Vector Speaker Recognition

State-of-the-art session variability compensation for speaker recognition are generally based on various linear statistical models of the Gaussian Mixture Model (GMM) mean super-vectors, while frontend features are only processed by standard normalization techniques. In this study, we propose a front-end channel compensation frame-work using mixture-localized linear transforms that operate befo...

متن کامل

Maximum Entropy Based Data Selection for Speaker Recognition

This paper presents the data selection method for speaker recognition. Since there is no promise that more data guarantee better results, the way of data selection becomes important. In the GMM-UBM speaker recognition, the UBM is trained to represent the speaker-independent distribution of acoustic features while the GMM speaker model is tailored for a specific speaker. In this study of data se...

متن کامل

Acoustic factor analysis based universal background model for robust speaker verification in noise

The Universal Background Model (UBM) is known as a speaker independent Gaussian Mixture Model (GMM) trained on a large speech corpus containing many speakers’ recordings in various conditions. When noisy test data is involved, UBM trained on clean data is generally not optimal. Using noisy data for UBM training, however, creates a bias towards the specific development noise samples resulting in...

متن کامل

Acoustic analysis and feature transformation from neutral to whisper for speaker identification within whispered speech audio streams

Whispered speech is an alternative speech production mode from neutral speech, which is used by talkers intentionally in natural conversational scenarios to protect privacy and to avoid certain content from being overheard or made public. Due to the profound differences between whispered and neutral speech in vocal excitation and vocal tract function, the performance of automatic speaker identi...

متن کامل

PCA, SFS or LDA: What is the Best Choice for Extracting Speaker Features?

Feature extraction is the process of deriving new weakly correlated features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allows higher classification accuracy. The selection and quality of the features representing each pattern have considerable bearing on the success of subsequent pattern classification. In this paper, we s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014